

MF610 Single-Phase BLDC Motor Controller Datasheet

Version 0.06 - Oct. 8, 2024

Copyright © 2024 by PADAUK Technology Co., Ltd., all rights reserved.

6F-6, No.1, Sec. 3, Gongdao 5th Rd., Hsinchu City 30069, Taiwan, R.O.C. TEL: 886-3-572-8688 🙀 www.padauk.com.tw

IMPORTANT NOTICE

PADAUK Technology reserves the right to make changes to its products or to terminate production of its products at any time without notice. Customers are strongly recommended to contact PADAUK Technology for the latest information and verify whether the information is correct and complete before placing orders.

PADAUK Technology products are not warranted to be suitable for use in life-support applications or other critical applications. PADAUK Technology assumes no liability for such applications. Critical applications include, but are not limited to, those that may involve potential risks of death, personal injury, fire or severe property damage.

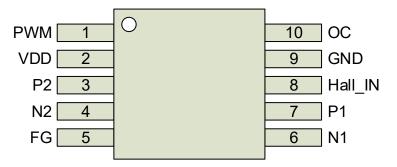
Any programming software provided by PADAUK Technology to customers is of a service and reference nature and does not have any responsibility for software vulnerabilities. PADAUK Technology assumes no responsibility for any issue caused by a customer's product design. Customers should design and verify their products within the ranges guaranteed by PADAUK Technology. In order to minimize the risks in customers' products, customers should design a product with adequate operating safeguards.

Table of Contents

Rev	vision History	4
1.	Key Features	5
2.	Pin Diagram and Pin Description	6
3.	Device Characteristics	7
	3.1. Absolute Maximum Ratings	
	3.2. DC/AC Characteristics	7
4.	Reference Application Circuit	10
5.	Package Information: MSOP10 (118mil)	11

Revision History

Revision	Date	Description						
0.04	2021/01/15	Add pin description						
		1. Updated "IMPORTANT NOTICE"						
0.05	2023/08/17	2. Updated DC/AC Characteristics: fsys, Iop, VBRD, VBG, fIHRC, VADC and ADclk						
		3. Amend chapter 4 (three-phase diagram)						
		1. Modify the maximum voltage of VDD to 6.5V						
0.06	2024/10/08 2.	2. Add a note that the time from 6V to 6.5V must be less than 25us						


1. Key Features

- Single-phase BLDC motor with hall IC interface
- PWM or voltage control input
- FG/RD/ALM/RALN/RXX/RRXX output
- Close loop or/and open loop control
- Current limit and over-current protection
- Soft-start, lock-protect and auto-restart
- System protection
 - Low-voltage detection with reset
 - Illegal opcode detection with reset
- MTP Programming
 - Support 6-wire factory programming mode
 - Support 4-wire in-system programming mode
- DC Fan Applications
 - Operating voltage range: 3.5V~6.5V
 - Operating temperature range: -40°C~105°C
- Package Information
 - MF610-M10: MSOP10 (118mil)

MF610 is a single phase BLDC motor controller based on 8-bit 8-FPPA MCU which can be programmed by 6-wire factory mode or 4-wire ISP mode. MF610 receives motor position signal from Hall IC and can control the H-bridge flexibly to make the best efficiency of the motor. Through the PADAUK patented AP development system, it can easily set any speed curve, output signal and protection parameters etc., and it can observe the motor response online immediately. Using the MF610's development system, it's much easier and adjustable for application.

2. Pin Diagram and Pin Description

MF610: M10 (MSOP10-118mil)

Pin Name	I/O	Description
PWM/ PB7	Input	PWM signal input
VDD	-	Power pin. Needs a 1uF and a 0.1uF capacitor in parallel.
P2/ PA6	Output	Output signal to control the high side of motor driver
N2/ PA7	Output	Output signal to control the low side of motor driver
FG/ PA0	Output	Rotation speed signal output
N1/ PA3	Output	Output signal to control the low side of motor driver
P1/ PA4	Output	Output signal to control the high side of motor driver
Hall_IN/ PA5	Input	Digital hall signal input
GND	-	Ground
OC/ PB0	Input	Analog input to sense motor current

3. Device Characteristics

3.1. Absolute Maximum Ratings

Name	Min	Тур.	Мах	Unit	Notes
Supply Voltage (VDD)	3.5		6.5	V	Exceed the maximum rating may cause permanent damaged!! The time of the VDD voltage between 6V and 6.5V must be less than 25us
Input Voltage	-0.3		V _{DD} + 0.2	V	
Operating Temperature	-40		105	°C	
Storage Temperature	-50		125	°C	
Junction Temperature		150		°C	

3.2. DC/AC Characteristics

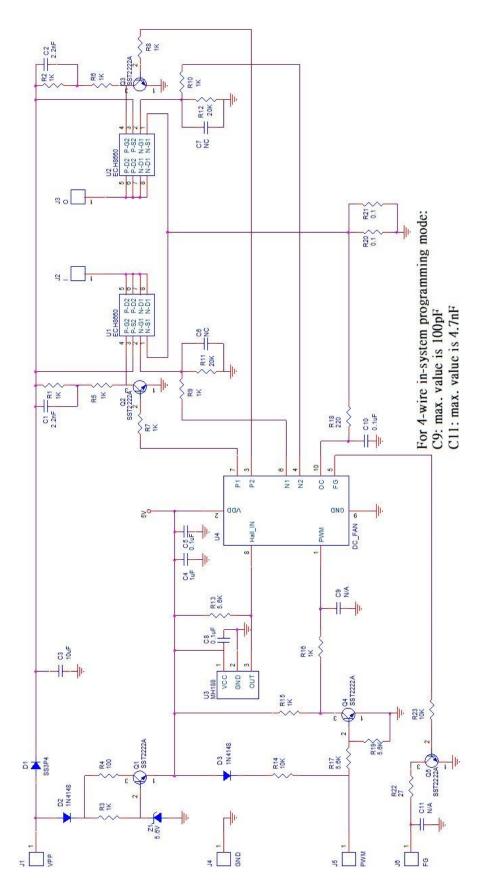
Symbol	Description	Min	Тур	Мах	Unit	Conditions (Ta=25℃)
V _{DD}	Operating Voltage	3.5 4.75	5.0 5.0	6.5 6.5	V	-40 °C <ta<85 °c<br="">-40 °C <ta<105 td="" °c<=""></ta<105></ta<85>
VFSV	Forbidden V _{DD} startup voltage range	0.7		1.6	V	
V _{PORV}	V _{DD} power down release voltage			0.7	V	
Tpor	V_{DD} power on time (V_{\text{DD}} from 0V to 5V)			50	ms	
T _{FSV}	V_{DD} power on time during V_{FSV} range			10	ms	
fsys	System clock IHRC/2	0		8M	Hz	V _{DD} = 3.3V
IOP	Operating Current		3.5		mA	fsys=8MIPS@5.0V
I _{PD}	Power Down Current (by stopsys command)		3 1		uA uA	V _{DD} =5.0V V _{DD} =3.3V
Ips	Power Save Current (by stopexe command)		0.4		mA	VDD=5.0V; Bandgap, LVD, IHRC, ILRC, Timer16 modules are ON.
VIL	Input low voltage for IO lines	0		0.2V _{DD}	V	
Vih	Input high voltage for IO lines	0.8 V _{DD}		Vdd	V	
I _{OL}	IO lines sink current	11	14	17	mA	V _{DD} =5.0V, V _{OL} =0.5V
Іон	IO lines drive current	-8	-10	-12	mA	V _{DD} =5.0V, V _{OH} =4.5V
R _{PH}	Pull-high Resistance		90 170		KΩ	V _{DD} =5.0V V _{DD} =3.3V

©Copyright 2024, PADAUK Technology Co. Ltd

PDK-DS-MF610_EN_V006 - Oct. 8, 2024

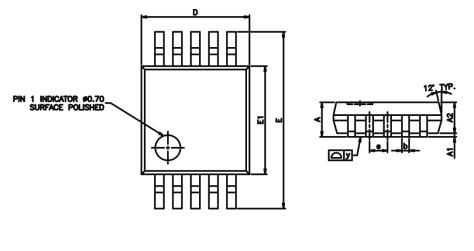
Symbol	Description	Min	Тур	Мах	Unit	Conditions (Ta=25℃)
VBRD	Low Voltage Detect Voltage * (Brown-out voltage)	3.0	3.3	3.5	V	
	Bandgap Reference Voltage (before calibration)	1.12	1.20	1.28	v	V _{DD} =5V, 25°C
Vbg	Bandgap Reference Voltage * (after calibration)	1.17*	1.20*	1.23*	V	V _{DD} =3.3V ~ 5.5V, -40°C <ta<105°c*< td=""></ta<105°c*<>
		15.52*	16*	16.48*		25°C, V _{DD} =3.3V~5.5V
f _{IHRC}	Frequency of IHRC after calibration *	14*	16*	17.28*	MHz	V _{DD} =3V~5.5V, -40ºC <ta<105ºc*< td=""></ta<105ºc*<>
		31.5*	33.8*	35*		V _{DD} =5.0V, Ta=25°C
filrc	Frequency of IL PC *	29*	33.8*	38.4*	KHz	V _{DD} =5.0V, -40°C <ta<85°c*< td=""></ta<85°c*<>
IILRC	Frequency of ILRC *	32*	34*	35.5*	КПZ	V _{DD} =3.3V, Ta=25°C
		29*	34*	40*		V _{DD} =3.3V, -40°C <ta<85°c*< td=""></ta<85°c*<>
V _{ADC}	Workable ADC operating Voltage	3.3		6.5	V	
Vad	AD Input Voltage	0		Vdd	V	
ADrs	ADC resolution			11	bit	
ADclk	ADC clock period		2		us	3.3V ~ 5.5V
tadconv	ADC conversion time (T _{ADCLK} is the period of the selected AD conversion clock)		14		Tadclk	
AD DNL	ADC Differential NonLinearity		±3*		LSB	
AD INL	ADC Integral NonLinearity		±3*		LSB	
ADos	ADC offset*		3 4		LSB	-40°C <ta<85°c* -40°C <ta<105°c*< td=""></ta<105°c*<></ta<85°c*
t _{INT}	Interrupt pulse width	30			ns	V _{DD} = 5.0V
V _{DR}	RAM data retention voltage*	1.5			V	In power-down mode.
t	Watchdog timeout period		4096			misc[1:0]=01
twdt	(TILRC is the clock period of ILRC)		16384			misc[1:0]=10
t _{SBP}	System boot-up period from power-on		1024		Tilrc	Where T _{ILRC} is the clock period of ILRC

Symbol	Description	Min	Тур	Max	Unit	Conditions (Ta=25℃)
	System wake-up period					· · · · · ·
	Fast wake-up by IO toggle from STOPEXE suspend		128		Tsys	Where T _{SYS} is the time period of system clock
	Fast wake-up by IO toggle from STOPSYS suspend, IHRC is the system clock		128 Т _{SYS} + Т _{SIHRC}			Where T _{SIHRC} is the stable time of IHRC from power-on.
twup	Fast wake-up by IO toggle from STOPSYS suspend, ILRC is the system clock		128 T _{SYS} + TsiLRC			Where T _{SILRC} is the stable time of ILRC from power-on.
	Normal wake-up from STOPEXE or STOPSYS suspend		1024		TILRC	Where T _{ILRC} is the clock period of ILRC
HCPos	Comparator offset*	-	±10	±20	mV	
HCPcm	Comparator input common mode*	0		V _{DD} -1.5	V	
HCPspt	Comparator response time**		100	500	ns	Both Rising and Falling
HCPmc	Stable time to change comparator mode		2.5	7.5	us	


*These parameters are for design reference, not tested for every chip.

** Response time is measured with comparator input at $(V_{DD}-1.5)/2 -100mV$, and $(V_{DD}-1.5)/2+100mV$

The characteristic diagrams are the actual measured values. Considering the influence of production drift and other factors, the data in the table are within the safety range of the actual measured values.


4. <u>Reference Application Circuit</u>

5. Package Information: MSOP10 (118mil)

DETAIL A

	DIMENSI	ons in Mil	LIMETERS
SYMBOLS	MIN	NOM	MAX
A	—	-	1.10
A1	0.05	-	0.15
A2	0.75	0.86	0.95
b	0.17	0.20	0.27
С	0.08	0.15	0.23
D	2.90	3.00	3.10
E	4.80	4.90	5.00
E1	2.90	3.00	3.10
	-	0.50	—
L	0.40	0.53	0.80
У	_	-	0.076
۲,	o	3	8

R0.1~0.15

DETAIL A

0.25

123 BURRS AND GATE B NOT EXCEED 0.005 [0.12mm] PER END ION "E1" DOES NOT INCLUDE INTERLEAD INTERLEAD FLASH SHALL NOT EXCEED PER SIDE. .010

- DOES NOT INCLUDE DAMBAF NABLE DAMBAR PROTRUSION : TOTAL IN EXCESS OF THE E 0.003 TO. BE COUSTICUOBININI TOTAL IN EXCESS OF THE TO DIMENSION AT MAXIMUM MATERIAL CONDITION. DAM CANNOT BE LOCATED ON THE LOWER RADIUS OR FOOT, MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD TO BE CLOOZE (10.07mm) TOLERNATCE : ±0.0107 (0.25mm) UNLESS OTHERWISE SPECIFIED. OTHERWISE DIMENSION FOLLOW ACCEPTABLE SECT AL CONDITION. DAMBAR LOWER RADIUS OR THE N PROTRUSION AND AN
- 5
- 6.
- SPEC. 7. REFERENCE DOCUMENT : JEDEC SPEC MO-187